
The
TextView

DLL

Version 1.00





The TextView DLL

Introduction to TextView

Thank you for using the TextView system. The author hopes that it will prove to be a powerful
and useful tool to Windows applications writers, providing a facility that is both useful in the
final application, and helpful in the development phase.

This manual covers all aspects of the system. It assumes that you are an experienced Windows
application developer, and are conversant with the use of the Windows API.

The author is always interested to hear any reports about how you find TextView, what further
facilities you would like it to include, and any problems you may find when using it. Contact
addresses are given later in this manual.

What is TextView?
TextView is a system that provides a Windows 3 application with the ability to write lines of
text  to  a  window  with  the  minimum  of  effort.  TextView itself  handles  all  the  many
operations needed to manage the window displaying the text; you need only call the function
that writes the text, in exactly the same way as you would call printf in a DOS application.

You  can  create  as  many  TextView windows  as  you  require,  and  all  will  operate
independently.  TextView windows can be resized by the user, minimized, maximized and
scrolled horizontally and vertically with no work needed by the application. They can also
have File menus that notify the application when the user requests that the window contents
be written to disk.

TextView windows  can,  of  course,  be  used  for  an  infinite  variety  of  purposes.  One
possibility  is  to  use  TextView to  provide  a  way  of  outputting  tracing  and  debugging
information when developing an application. Included with the system are the sources for a
demonstration application that contain a flexible tracing system that may be incorporated
into your own code.

TextView is supplied as a Dynamic Link Library or DLL. In this form it is not added to the
application's code at link time, but instead is bound to it dynamically by Windows whenever
an application needing it is run. All applications using TextView will share the same code
segments, making it very efficient in memory utilisation.

What you need to use TextView
In  order  to  use  TextView you will  need  to  have  a  suitable  compiler  that  can  generate
Windows  3  code,  such  as  Microsoft  C  6.0.  The  TextView functions  follow  the  same
conventions as used in the Windows API, and their descriptions later in this guide use the
same layout as in the Microsoft Windows Programmer's Reference.

Page 1



The TextView DLL

Distribution and Use of TextView
TextView is Copyright (c) Alan Phillips 1991. It may be freely distributed by anyone, to
anyone. Apart from reasonable media and handling costs, no charge may be levied for its
distribution. It may be stored on Bulletin Board systems and other archives so long as all the
files  comprising  the original  distribution  are included.  It  may be repackaged to suit  the
storage conventions in use for the system concerned. It may not be distributed as part of
commercial disk libraries without the prior agreement of the author.

TextView may be freely used in any non-commercial Windows application. Authors of such
applications may include the  TextView DLL with the products either with or without the
other files comprising the full distribution set. However, such application should include in
their documentation (or should display in their About dialog box or in their online help) that
they are using TextView, and should list the author's copyright.

The demonstration sources supplied with TextView may be freely adapted and included in
other applications as required.

Authors of ShareWare or commercial products may not use TextView without the author's
written permission.

Disclaimer
TextView is  distributed on an  as is basis.  No guarantee is  offered,  and none should be
inferred, of its correct functionality, nor of its suitability for any task whatsoever. The author
accepts no liability for any loss or damage whatsoever caused as a result of using TextView
with any application, whether written by the user or a third party.

TextView is written as a private activity by the author, unconnected in any way with his
employment at the University of Lancaster.

Contacting the Author
The author may be contacted c/o The Computer Centre, Lancaster University, Lancaster
LA1 4YW, United Kingdom. Electronic mail may be addressed to one of the following
addresses:

alan@uk.ac.lancaster
alan@lancaster.ac.uk
alan%uk.ac.lancaster@ukc

Page 2



The TextView DLL

Installing TextView
There are three components to the  TextView system. The DLL itself,  textview.dll, should be
copied to your Windows directory. The model-independent import library textview.lib should be
copied  to  one  of  the  directories  named  in  your  LIB environment  variable  -  the  directory
containing your Windows SDK libraries or your C compiler libraries would normally be suitable.
The header file textview.h should be copied to one of the directories named in your INCLUDE
environment variable - the directory containing your windows.h header file would be suitable.

Page 3



The TextView DLL

Using TextView

The TextView DLL extends the Windows API with a number of specific functions, which you
call from your application. All the functions have names beginning with  TV, to avoid clashes
with Windows functions, those in your application or in other DLLs.

All the functions use the Pascal calling convention, and must be declared  FAR. Full function
prototypes  are  contained  in  the  include  file  textview.h;  including  this  in  your  source  will
automatically  select  the right  calling mode,  and will  also perform any necessary casts to  far
pointers.

You must take two additional steps when building your application:

- Include the TextView import library textview.lib in the list of libraries that you name 
for the linker to scan.

- Make sure you declare sufficient stack size in your application's .DEF file. As a rough 
guide, try increasing the size by 2Kbytes over what your application itself uses.

You must not use the Windows LoadLibrary and GetProcAddress functions to link TextView
routines at run-time. This is because some of the functions are actually within the import library
and must be statically-linked.

The sections below describe how to use  TextView in your application. The text assumes that
you're familiar with the Windows API and with how to program Windows applications: there is
general information on this in the documentation supplied with the Microsoft Windows Software
Developer's Kit, and in several other published books.

Besides this manual, there is a comprehensively-commented set of C source routines supplied in
the distribution set. These show you how you can use TextView to add a dynamic tracing utility
to your application, which provides you with a very powerful development aid that enables you
to  keep  a  log  of  your  application's  activity  that  can  be  scrolled  back  and  consulted  when
necessary. 

A Summary of TextView Usage
Although  it  offers  your  application  powerful  facilities,  TextView's  API  is  very
straightforward, and has been written to parallel closely the way you use the Windows API.
The basic concepts of how the system works are these:

The TextView Window
A window created by TextView is an ordinary overlapped window that belongs to your 
application. Within certain limits you have full control over the appearance of the 
window: you can allow the user to resize it or not, supply it with maximize and 

Page 4



The TextView DLL

minimize boxes, and so on.
Creation of a TextView window is done with the TVCreateWindow function, which 
looks similar to the Windows CreateWindow function. The major difference is that for 
a TextView window the message loop is handled within the DLL and not by your 
application, so that you do not need to concern yourself with managing the window. 
TextView will look after aspects such as text scrolling on your behalf.
Although your application does not supply the message loop, it can still interact fully 
with the window. A set of functions allow you to test what state the window in and to 
change that state, and to destroy the window when you've finished with it.
If you choose, you can specify that a TextView window displays a File menu with Save,
Save As and Print options. You do not see clicks on these menu items directly, since 
you do not supply the message loop, but you can arrange for TextView to call back into 
a routine in your application to notify you when menu items are selected.

How Text is Stored
TextView maintains the lines written to each window in a cyclic buffer held in an area 
of memory private to that window. Each window operates independently of the others, 
and the only practical limit to the total amount of data stored will be how much memory
your system has available.
When you create a window by calling TVCreateWindow you specify the maximum 
number of lines that each window can store, up to a limit of 4096 lines. Specifying a 
larger number requires TextView to allocate more control memory for the window, so 
you should not request a larger capacity that you need.
Whenever a line is written, TextView stores the contents in dynamically-allocated 
memory. When the window contains the specified maximum number of lines, the next 
to be written will replace the oldest line, and so on. A line can be up to 512 characters 
long.

Scrolling
When you create a TextView window it will be in automatic scrolling state. In this state
TextView will automatically move existing lines of text up to make room as new ones 
are written, without your application needing to be aware of what is happening. Old 
lines, of course, will disappear off the top of the window, but they will remain stored in 
memory until the window reaches its set capacity and they are overwritten with new 
lines of text.
If the user wishes to look at older messages that are no longer visible in the window, he 
can put the window into manual scrolling state. TextView will draw horizontal and 
vertical scroll bars on the window (you may select either or both) and the user may use 
them to scroll around the stored text. You can specify when you create the window that 
it is to have a Scrolling menu to enable the user to select manual scrolling mode, or you 
may choose to control the window from your own application using the 
TVSetScrollMode function.
When the window is in manual scroll mode it is unable to display any text written to it. 
However, it will count the number of messages lost should this occur, and will add a 

Page 5



The TextView DLL

line itself to the window to warn the user when the window returns to automatic scroll 
mode.

Registering a TextView Window Class
As with the Windows CreateWindow function, you must have registered a suitable window
class before you can create a  TextView window using  TVCreateWindow. Since most of
the details of the window class have to be supplied by  TextView itself,  you must call  a
TextView function  TVRegisterClass to do this, and must not use the ordinary Windows
technique.

When you call TVRegisterClass you specify four arguments: for example

TVRegisterClass(hInstance,"TV_WINCLASS",
LoadIcon(hInstance,"TV_WINICON"),
GetStockObject(WHITE_BRUSH));

will register a class using an icon defined in your application's resource area, and will use a
white background for the window.

The function  will  return  FALSE if  it  fails  to  register  the window class,  or  if  you pass
incorrect arguments.

Creating a TextView Window
Creating a Window with  TextView is closely analogous to how you use Windows' own
CreateWindow function.  The  routine  you  call  is  TVCreateWindow,  and  many  of  the
arguments you need to pass are have exact CreateWindow equivalents.

The lpClassName, lpWindowTitle, X, Y, nWidth, nHeight and hInstance arguments are used
in the same way as the CreateWindow arguments of the same name. The one restriction is
that the window class you specify with  lpClassName must have been registered with the
TVRegisterClass function.

The remaining arguments are specific to TextView and have no CreateWindow equivalents.

hFont specifies a handle to the font that you want text written in the window to appear in. If
you specify the argument as NULL, TextView will use the system font; otherwise, you can
use any font created with the CreateFont function.

The dWflags argument specifies a series of bit settings that describe the appearance you want
the window to take, and what facilities it provides. These are described in detail below.

The  nTabSize value specifies how you want tabs to be expanded in lines written to the
window. You give the value as a number of characters; TextView multiplies this by the
width of the average character in the selected font to calculate the actual spacing. If you give

Page 6



The TextView DLL

a value of zero, tabs will be expanded to a width of 8 characters.

The nMaxLines argument tells TextView how many lines of text should be stored with the
window (note that this is not the size of the actual window, but the size of its data storage
area). You can set this value to be from 128 to 4096. If you write more lines than this to the
window, the oldest lines will be progressively overwritten.

The  lpMenuHandler argument is the procedure instance address of a function within your
application  that  is  to  receive  notification  of  things  happening  in  the  window.  This  is
discussed in more detail below in the section on  Receiving Menu Notifications. The value
you  pass  as  this  argument  must  have  been  obtained  by  using  the  MakeProcInstance
function. Depending on the values you have specifies in the dwFlags argument, you may be
allowed to give a NULL value.

The return value from  TVCreateWindow is a normal window handle, which you use in
other  TextView functions.  You  can  also  pass  this  handle  to  Windows  functions  to
manipulate  the  window; however  you should avoid  calling  DestroyWindow to  close it.
Instead, use the TextView equivalent TVDestroyWindow, which is guaranteed to work in
future releases.

The dwFlags Argument
This argument is a collection of bit settings that tells TextView details of how you want 
the window to appear, and what facilities it should support. 
The TVS_MAXIMIZE, TVS_MINIMIZE and TVS_SYSMENU settings correspond 
directly to dwStyle settings in CreateWindow, and control whether the window has a 
maximize box, a minimize box, and a system menu.
The TVS_NOCLOSE setting can be used to disable the close option in the system 
menu; if you select this, your application must destroy the window, as the user will have
no way to do so. If you specify a system menu, and do not disable the close option, you 
must supply a procedure address with the lpMenuHandler argument so that TextView 
can notify your application when the user closes the window.
The TVS_NORESIZE setting allows you to create the window without a thick 
"resizing" frame. The user will not be able to alter the size of the window other than by 
minimizing or maximizing it.
TVS_HSCROLL and TVS_VSCROLL specify whether the window is to show 
horizontal and vertical scroll bars if the user or your application puts it into manual 
scroll mode. If you don't include either of the settings, manual scroll mode cannot be 
selected, and the user will be unable to scroll back to look at text no longer in the 
window.
TVS_TIMESTAMP controls whether TextView is to timestamp text written to the 
window. If you specify it, all lines will be prefixed with the current Windows time (that 
is, the number of milliseconds since Windows started, obtained from the 
GetCurrentTime function). Timestamping messages can be useful if you are using 
TextView to trace the path taken by your application in response to external events.

Page 7



The TextView DLL

The other settings all control what menu items should appear in the window's menu bar. 
TVS_SCROLLMENU selects a Scrolling menu item, which will let the user switch 
between manual and automatic scroll modes. You can use this setting only if you've also
given either or both of TVS_HSCROLL and TVS_VSCROLL. If you specify a 
procedure address with the lpMenuHandler argument, your application will be notified 
when the user clicks these menu items.
TVS_FILESAVE, TVS_FILESAVEAS and TVS_FILEPRINT specify that the 
window is to have a File menu, which should include Save, Save As and Print options 
respectively.  You can use the three settings independently. If you use any of these 
settings you must specify a procedure address in the lpMenuHandler argument to 
receive notification when the items are clicked. 

Writing Text to a TextView Window
Once  a  TextView window  is  created,  writing  text  to  it  is  simply  done  with  the
TVOutputText function. This takes three arguments:

hWnd This is the handle to the TextView window.
lpBuffer This is a long pointer to a buffer containing the line you wish to 

write.
nSize This is the number of characters in the buffer. If you set this value 

to zero, TVOutputText will assume the text is a zero-terminated 
string and will write it out completely.

You can write up to 512 bytes in a line, less the length of the timestamp details if you used
the  TVS_TIMESTAMP option  in  the  dwFlags argument  to  TVCreateWindow.  If  you
supply a longer line than that, TextView will truncate it.

What happens to the text depends on the current state of the  TextView window you are
writing it to. If the window is in automatic scroll mode, it will be displayed in the window,
which will be scrolled up by one line if necessary to make room for it.  The text will be
written in the colour last specified with the  TVSetTextColor function (or in black, if you
haven't set another colour).

If the window is in manual scroll mode, the text will be discarded. TextView will record the
fact that a line has been lost, and when the user (or your application) returns the window to
automatic scroll mode will add a line itself noting the number of lines that have ben lost. If
the window has been suspended with a call to  TVSuspendWindow, or you are currently
calling the TVReturnData function to read back the data stored in the window, the text will
also be discarded. Here, though, TextView will not record the fact.

If  you  choose,  you  can  determine  the  status  of  the  window  by  calling  the
TVGetWindowStatus function,  and  so  avoid  making  calls  to  TVOutputText at
inappropriate moments.

Page 8



The TextView DLL

Receiving Menu Notifications
A TextView window is an independent entity, all of whose functions are controlled within
the  TextView DLL  itself.  Your  application  does  not  provide  the  message  loop  for  the
window,  and is  normally  unaware  of  what  the  user  is  doing to  the  window:  TextView
handles window resizing, scrolling, iconizing and so on.

However, you may wish to make your application aware of what the window is doing for
one of two reasons. Firstly, you may wish to allow the user to control the window from
either its own menu or from the application's menu - for example, you might include in your
application's menu the ability for the user to switch the TextView window between manual
and  automatic  scrolling.  In  order  to  keep  the  application's  menu  state  in  line  with  the
window,  it  will  be  necessary  for  the  application  to  be  informed  whenever  the  state  is
changed  using  the  window's  own menu.  The  application  will  probably  also  wish  to  be
informed when the user closes the window with the Close option in its System menu, so that
it can keep track of which windows are still active.

The second reason is that  some services  must be provided by the application.  TextView
allows you to specify that the window should possess a File menu with options such as Save
and  Print, but it does not itself handle these functions. Instead, it  notifies the application
when  one  of  these  menu  items  is  clicked,  so  that  it  may  then  perform  the  required
operations.

All these examples of menu notifications are done via the  menu handler routine specified
when you create the window with  TVCreateWindow.  Whenever the user clicks a menu
item (including the  Close option  in  the  System menu)  the  TextView DLL will  call  this
routine, passing it the handle of the window concerned, and a code indicating the menu item.

Your code can then take what action it wishes. For example, if the user clicked on File Save
As, you might run a dialog to ask the user for a file name, open it, and then copy the data
currently in the window to the file using the TVSaveWindowToFile function.

The example sources contained in the distribution set  contain examples of  how you use
menu notification. The code keeps the main window's menu in line with the current state of
the window, graying some items when the window is destroyed and checking the relevant
scroll state selections.

Saving Data in a Window to File
TextView allows you to save the contents of a window to a file on disk at any time. There
are two techniques for doing this, depending on how much processing of the data you wish
your application to do before it is written.

If you application created the window and specified a File menu with File Save or File Save
As options, it will be notified when they are clicked, as described above, but you can, of
course, initiate a file save at any time and not solely when this occurs.

Page 9



The TextView DLL

The  first  technique  for  saving  the  data  is  the  simplest.  TextView provides  a  function
TVSaveWindowToFile which will write a range of lines to a file exactly as they as stored,
and if  you don't  need to  process the  data  yourself  this  will  be the easiest  option.  Your
application will need to determine the name of the file to be written, probably by giving the
user  a  dialog  box  to  choose  it,  and  open  the  file  for  writing;  then  it  can  call
TVSaveWindowToFile.

For example, if the name of the file is stored in file_name, you could use code like this to
save all the data stored for the window:

int hFile; /* handle to file */

...

hFile = _lcreat(file_name,0);
TVSaveWindowToFile(hWnd,hFile,0,-1,0L);

Specifying the start line as 0 and the number of lines to write as -1 causes all the stored data
to  be  saved.  The  demonstration  program  sources  in  the  distribution  set  show  you  this
technique in use.

The second technique for saving data allows you to process the lines before they are written.
You can obtain successive lines from the window by calling the TVReturnData function,
described in a following section, perform the actions required, and write to the file yourself.

If you wish to save only the data that is actually visible in the window, you can use the
TVGetWindowStatus function to obtain the required line numbers, as shown here:

TVWSTATUS status; /* window status details */
int hFile; /* handle to file */

...

/* Get details of the window */

TVGetWindowStatus(hWnd,&status);

/* Open the file and write the data that is visible now */

hFile= _lcreat(file_name,0);
TVSaveWindowToFile(hWnd,hFile,status.nTopLine,

status.nRows,0L);

Giving the number of lines to be written as the number of rows in the window ensures that
all the visible data is written. If the window is not actually full, the function will adjust the
number requested itself.

Page 10



The TextView DLL

Printing Data in a Window
TextView does not itself provide facilities to print the contents of a window to file. If you
wish your application to do this, you will need to use the TVReturnData function described
below to read back the window's contents, and handle the printer yourself.

If you create the window to have a File menu with a Print option, TextView will notify your
application when the user requests a print action by clicking it.

Reading Back the Contents of a TextView Window
Your application can call the TextView DLL at any time to read back the data stored with
any TextView window, using the TVReturnData function.

The initial call to  TVReturnData nominates a buffer that you wish to use to receive the
contents  of  the window,  one line  at  a time.  You also specify  the address of  a  callback
function; TextView will copy the text of one line into your buffer and call this function to
allow  you  to  process  it,  repeatedly  until  either  every  line  has  been  processed,  or  you
terminate the sequence.

For example, the callback function might be declared like this:

int FAR PASCAL data_handler(HWND hWnd, LPSTR lpBuffer,
int nCount, BOOL nTruncated)

{
/* Make sure we didn't lose any bit of the line */

if ( nTruncated )
{

/* Buffer was too short, so a line has been cut
*  short. Warn the user and abort the process
*/

MessageBox(NULL,"Buffer too short",NULL,
MB_ICONSTOP | MB_TASKMODAL);

return(0);
}

/* Got all the line, so process it */

process_line(lpBuffer);

/* And return non-zero to get the next line */

return(1);
Page 11



The TextView DLL

}

This routine will be called once for every line of text in the window. It checks that no data
was lost due to the buffer being too small, and if it was it terminates the read of data by
returning a value of zero to the DLL. If not, it calls some routine called process_file to do
something to the data, and returns a non-zero value requesting the DLL to pass the next line
to it.

While your application is engaged in reading back lines of text from a window, any calls to
TVOutputText to add more text to it, and most of the functions controlling the window,
will be disabled.

The example sources supplied in the distribution give you a full  example of how to use
TVReturnData. In this case, they read back the data from one window and make a copy of
it in another.

Destroying a TextView Window
A TextView window may be destroyed in one of two ways. Your application may simply
call the TVDestroyWindow function, which will remove the window from the screen and
release all its memory resources. This may be done at any time.

Alternatively, if you specified in the TVCreateWindow call that the window was to have a
System Menu, and did not inhibit the Close option, the user may close the window directly
by clicking that option. In this case, TextView will remove the window from the screen and
release the memory resources used by the window. It will then notify your application that
the window has been destroyed by calling the menu handler function, passing it a code of
TVMI_CLOSE.

You should not use the normal Windows DestroyWindow function to destroy a TextView
window as this may be incompatible with future releases.

Control Functions
TextView provides  your  application  with  a  range  of  control  functions  that  control  the
operation of its windows, as described below:

Setting Text and Background Colour
By default, text will be displayed in a TextView window in black. The 
TVSetTextColor function allows you to specify any RGB value to be used for 
subsequent output. The TVSetBKColor function allows you to set the text background 
colour.

Page 12



The TextView DLL

Setting the Scroll State
If you specify the TVS_SCROLLMENU setting in the dwFlags argument to 
TVCreateWindow, the window will have a Scrolling menu that will permit the user to 
switch between manual and automatic scroll modes at will.
If you wish, your application can force a particular scroll state itself with the 
TVSetScrollState function. If you do not specify a Scrolling menu, this is the only way 
to change scroll modes.

Suspending Text Output
At some point in your application you may wish to suppress output to a TextView 
window. One way of doing so would, of course, be to set a global flag in your 
application's data segment that is checked by every routine that calls TVOutputText, 
and this technique  is used in the demonstration application to activate or disable 
tracing.
An alternative that does not involve a global flag is to use the TVSuspendWindow 
function. When a window is marked as suspended, TVOutputText functions as normal,
but the text is discarded.

Temporarily Inhibiting Window Updates
Writing text to a window, particularly if the existing contents must be scrolled to make 
room, can be an expensive operation in terms of processor power. If your application 
has to write a large number of lines to a TextView window at one time, it will be 
considerably slowed while the data is scrolled up through the display.
The TVSetRedraw function allows you to configure a window so that text lines are 
stored as normal, but the window is not updated as they are received, letting you write 
the data with TVOutputText very rapidly. Then, when you have written all the lines, 
you can tell TextView to update the window: it will display only the final windowfull 
of lines, which will involve no scrolling.
The demonstration program supplied with TextView lets you see the effect of 
suppressing window updates: the Write Batch menu option writes 200 lines to the 
window, scrolling for each one; the Write Batch Fast option disables window updating, 
writes 200 lines and then updates the window.

Clearing a Window
The TVResetWindow will destroy all data stored for a window, and it will be redrawn 
empty. The window will be set into automatic scroll mode, and the text colour used will
be set to be black.

Information Functions
You  can  find  out  the  exact  status  of  a  TextView window  at  any  time  by  calling  the
TVGetWindowStatus routine.  This fills  in a  TVWSTATUS struct that you supply; the
details of the format are shown in the Data Types and Structures section.

Page 13



The TextView DLL

Functions Directory

This chapter contains an alphabetical  list  of functions comprising the  TextView system. The
specifications are laid out in the same way as those in the Microsoft Windows Programmer's
reference Manual.

All TextView functions use the Pascal calling convention, and must be declared FAR. Including
the  header  file  textview.h in  sources  using  these  interfaces  will  declare  their  prototypes
automatically, and will ensure that they are being correctly used.

Applications that make use TextView routines must be linked with the TextView import library
textview.lib.

Page 14



The TextView DLL

TVCreateWindow
Syntax
TVCreateWindow(lpClassName, lpWindowName, X, Y, nWidth, nHeight, hInstance, hFont, 
dwFlags, dwUnused, nTabSize, nMaxLines, lpMenuHandler)

This function creates a TextView window. Many of the arguments are similar 
to those used with the CreateWindow function, but there are some extra values
appropriate to TextView, and some inappropriate arguments may not be 
specified.
TVCreateWindow will always create an overlapped window. Option flags 
allow the selection of minimize and maximize boxes, and whether the user 
will be able to resize it by dragging its borders.
TextView allows the application to interact with the window in a controlled 
way. All message handling for the window is performed by TextView, but the
application can specify that it wished to be notified when events such as menu 
item clicks occur. For example, this allows the window to appear to the user as
a normal application window complete with a File menu, but for handling of 
the corresponding functions to be done by the application.

Parameter
Type/Description

lpClassName
LPSTR

Points to a null-terminated string that names the window class. This class must have been 
previously registered with a call to TVRegisterClass.

lpWindowName
LPSTR

Points to a null-terminated character string that represents the window name.

X
int Specifies the initial x-position of the window. The value is the initial x-coordinate of the 
upper left corner, in screen coordinates. If the value is CW_USEDEFAULT, Windows selects 
the default position for the window's upper-left corner.

Y
int Specifies the initial y-position of the window. The value is the initial y-coordinate of the 
upper left corner, in screen coordinates. 

nWidth
int Specifies the width of the window in device units. If the value is CW_USEDEFAULT, 
Windows selects a default width and height for the window, and the nHeight argument is 
ignored.

nHeight
int Specifies the height of the window in device units. The argument is ignored if nWidth is 

Page 15



The TextView DLL

CW_USEDEFAULT.

hInstance
HANDLE

Identifies the instance of the module to be associated with the window.

hFont
HFONT

Specifies a handle to the font to be used when text is written to the window. If the value 
is NULL, the system font is used.

dwFlags
DWORD

Specifies various facilities required in the window. It can be any combination of the 
values given in the list below.

dwUnused
DWORD

Must be zero.

nTabSize
int Specifies the width of a tab stop to be used when writing text to the window.

nMaxLines
int Specifies how many lines of text are to be stored in the window's buffers. The value must 
be between 128 and 4096; values outside this range will be silently adjusted.

lpMenuHandler
FARPROC

A procedure instance of a routine to be called when the user clicks on an item in the 
window's menu. See the "Comments" section for details.

Return Value The return value is a handle to the new window. It is NULL if the window 
could not be created.

Comments Where the X argument is CW_USEDEFAULT, the Y argument can be one of 
the show-style parameters described with the ShowWindow function.
The address passed as the lpMenuHandler argument must be created by using 
the MakeProcInstance function. The callback function must use the Pascal 
calling convention and be declared FAR.
The dwFlags argument should contain values from the list below:
TVS_FILESAVE Specifies that the window is to have a File menu that 

will incorporates a Save option. If this option is specified
the lpMenuHandler argument must not be NULL.

Page 16



The TextView DLL

TVS_FILESAVEAS Specifies that the window is to have a File menu that 
will incorporates a Save As option. If this option is 
specified the lpMenuHandler argument must not be 
NULL.

TVS_FILEPRINT Specifies that the window is to have a File menu that 
includes a Print option. If this option is specified the 
lpMenuHandler argument must not be NULL.

TVS_HSCROLL Specifies that the window is to permit horizontal 
scrolling by the user.

TVS_MAXIMIZE Specifies that the window is to have a maximize box.
TVS_MINIMIZE Specifies that the window is to have a minimize box.
TVS_NOCLOSE Specifies that the Close option on the window's system 

menu is to be inhibited. If this option is used the window
can only be destroyed by a call to TVDestroyWindow. 
This option is ignored if TVS_SYSMENU is not 
specified also.

TVS_NORESIZE Specifies that the window is not to have a thick frame 
allowing the user to resize it.

TVS_SCROLLMENU
Specifies that the window is to have a Scroll menu, 
allowing the user to switch between manual and 
automatic scrolling. This option requires one or both of 
TVS_HSCROLL and TVS_VSCROLL to also be 
defined. 
If this option is omitted, the application must switch 
scrolling modes if required with a call to 
TVSetScrollState.

TVS_SYSMENU Specifies that the window is to have a system menu. If 
this option is used and the TVS_NOCLOSE option is not
used, the lpMenuHandler argument must not be NULL.

TVS_TIMESTAMP Specifies that lines written to the window are to 
automatically be timestamped. TextView will prepend 
the current Windows time (the number of milliseconds 
since Windows was started) to the text supplied.

TVS_VSCROLL Specifies that the window is to permit vertical scrolling 
by the user.

Callback
HWND
WORD

MenuHandler is a place-holder for the application-supplied function name. 
The actual name must be exported by including it in an EXPORTS statement 
in the application's module definition file.

Page 17



The TextView DLL

Parameter
Type/Description

hWnd
HWND

Identifies the window whose menu item has been selected

nMenuItem
WORD

Identifies the menu item concerned. The value will be one of those in the table below.

The menu handler callback function will be informed of which menu option 
has been clicked in the nMenuItem argument. The value will be one of those 
in the list below; if the dwFlags argument to TVCreateWindow did not 
enable a menu item the corresponding notification value will not occur.
TVMI_AUTOSCROLL

Specifies that the user has clicked the Automatic option 
in the window's Scrolling menu. TextView will have 
already set the window into automatic scrolling state and
hidden any scroll bars.

TVMI_CLOSE Specifies that the user has clicked the Close option on 
the window's system menu. The window will already 
have been destroyed when this event is notified.

TVMI_FILESAVE Specifies that the user has clicked the Save option in the 
window's File menu.

TVMI_FILESAVEAS
Specifies that the user has clicked the Save As option in 
the window's File menu.

TVMI_FILEPRINT Specifies that the user has clicked the Print option in the 
window's File menu.

TVMI_MANUALSCROLL
Specifies that the user has clicked the Manual option in 
the window's Scrolling menu. TextView will already 
have set the window into manual scrolling mode and 
drawn the required scroll bars.

Page 18



The TextView DLL

TVDestroyWindow
Syntax
TVDestroyWindow(hWnd)

Destroys a window created with the TVCreateWindow function.
Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window to be destroyed.

Return Value The function returns TRUE if the window has been destroyed.

Page 19



The TextView DLL

TVGetWindowStatus
Syntax
TVGetWindowStatus(hWnd,lpStatusBlock)

This function returns status information for a TextView window.
Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

lpStatusBlock
LPTVWSTATUS

A FAR pointer to a TVWSTATUS block whose values will be filled in by this call.

Return Value The return value will be TRUE if the call succeeded and the status information
was returned.

Page 20



The TextView DLL

TVOutputText
Syntax
TVOutputText(hWnd,lpString,nCount)

Writes one line of text to a TextView window. The text is stored in the 
window's buffer; if this contains the maximum number of lines specified when
the window was created, the oldest stored line will be replaced.
If the TVS_TIMESTAMP option was specified when the window was 
created, TextView will prefix the supplied text with the current Windows time
before displaying it.
Tab characters will be expanded to the width specified when the window was 
created.
The text will be written using the colour defined by the last call to 
TVSetTextColor, or in black by default.

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

lpString
LPSTR

Points to the string to be written.

nCount
int Specifies the number of characters in the string. If the value is zero the string will be 
assumed to be null-terminated and will be written in its entirety.

Return Value The return value will be TRUE if the text was successfully displayed.
Comments There are three conditions in which the text will not be displayed in the 

window as requested:
1. If the window has been put into suspended state with a call to 
TVSuspendWindow, the call to TVOutputText will be silently ignored.
2. If the application has called TVReturnData to read back the lines stored in 
the window, and has not yet ended the call-back loop, the call to 
TVOutputText will be silently ignored.
3. If the window is in manual scroll mode, the call will also be silently 
ignored. However, TextView records the number of lines lost when this 
occurs, and will add a line to the window itself to notify the user when the 
window returns to automatic scroll mode.
In all these cases, TVOutputText returns a value of TRUE to the caller. A 
FALSE value is used solely to indicate a system problem such as insufficient 
memory.
Text longer than 512 bytes will be truncated.

Page 21



The TextView DLL

TVRegisterClass
Syntax
TVRegisterClass(hInstance,lpClassName,hIcon,hbrBackground)

This function registers a window class that can subsequently be passed to 
TVCreateWindow to create a TextView window. The use of the function is 
similar to that of the RegisterClass function, with the exception that 
TextView itself will supply most of the details required.

Parameter
Type/Description

hInstance
HANDLE

Specifies the application's instance handle.

lpClassName
LPSTR

Points to a null-terminated string containing the name to be given to the window class.

hIcon
HICON

Specifies a handle to the icon to be used when the TextView window is minimized. It 
must not be NULL.

hbrBackground
HBRUSH

Specifies the class background brush to be applied to the window. The meaning is as 
defined for the hbrBackground item of the WNDCLASS structure, with the exception that the 
value must not be NULL.

Return Value The function returns TRUE if the class was registered successfully.
Comments An error return value of FALSE will result both from the class name already 

having been registered, and from invalid arguments being supplied.

Page 22



The TextView DLL

TVResetWindow
Syntax
TVResetWindow(hWnd)

This functions resets a TextView window to an 'empty' state. All stored text is
discarded, and the window is redrawn empty. The window will be put into 
automatic scroll mode, and will be marked as not suspended. The text colour 
will be set to black.

Parameter
Type/Description

hWnd
HWND

Specifies the handle of the window concerned.

Return Value The function will return TRUE if the operation succeeded.

Page 23



The TextView DLL

TVReturnData
Syntax
TVReturnData(hWnd,lpBuffer,nSize,lpNotifyFunc)

This function requests TextView to return the data stored in a TextView 
window into an application-supplied buffer. TextView will copy successive 
lines into the buffer, and will call back into a notification function to inform 
the application that each line is ready. The process continues until either all 
the lines have been returned or the callback function returns zero.

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

lpBuffer
LPSTR

Points to the application's buffer into which TextView will copy successive lines.

nSize
int Specifies the size of the application's buffer.

lpNotifyFunc
FARPROC

The procedure-instance address of the callback function used to notify the application 
when each line has been copied into the buffer.

Return Value The return value specifies the last value returned by the callback function. Its 
meaning is user-defined.

Comments The address passed as the lpNotifyFunc argument must be created by using the
MakeProcInstance function.
The callback function must use the Pascal calling convention and be declared 
FAR.

Callback
HWND
LPSTR
int
BOOL

NotifyFunc is a placeholder for the application-supplied function name. The 
actual name must be exported by including it in an EXPORTS statement in the
application's module definition file.

Page 24



The TextView DLL

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

lpBuffer
LPSTR

Points to the application-supplied buffer that now contains the text of a line of text from 
the window.

nCount
int Specifies the line number within the window corresponding to this call. The first line is 
numbered zero.

nTruncated
BOOL

This value will be TRUE if the text had to be truncated to fit into the supplied buffer.

Page 25



The TextView DLL

TVSaveWindowToFile
Syntax
TVSaveWindowToFile(hWnd,hFile,nStart,nLines,dwFlags)

This function writes the data stored for a TextView window into a file. It can 
be called at any time, and not only in response to the user clicking an item in 
the window's File menu.

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

hFile
int Specifies the MSDOS handle to the file to which the data is to be written. The file must 
have been opened for writing.

nStart
int Specifies the number of the first stored line to be written to the file. The first line is 
numbered zero.

nLines
int Specifies the number of lines to be written. A value of -1 will write all the lines stored 
from the first specified to the end of the buffer.

dwFlags
DWORD

Must be set to 0L.

Return Value The function returns TRUE if the operation succeeded. A value of FALSE 
indicates either that the range of lines requested was invalid, or that an error 
occurred writing the file. In the latter case, TextView will display a message 
to alert the user.

Page 26



The TextView DLL

TVSetBkColor
Syntax
TVSetBkColor(hWnd,crColor)

This function sets the background colour used when text is written to a 
TextView window. 

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

crColor
COLORREF

Specifies the new background colour.

Return Value The function will return the previously set colour, or -1 if an error occurs.
Comments TextView does not record background colours with individual messages. As 

the screen is scrolled messages that are written will use the text colour defined 
when they were stored, but the current background colour value.

Page 27



The TextView DLL

TVSetRedraw
Syntax
TVSetRedraw(hWnd,nNewState)

This function sets the redraw of a TextView window. If the state is set to 
FALSE, lines written to the window with TVOutputText will be stored, but 
the screen will not be updated until the state is changed to TRUE.

Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

nNewState
BOOL

Specifies the new state to be set.

Return Value The function will return the previous redraw state of the window.

Page 28



The TextView DLL

TVSetScrollState
Syntax
TVSetScrollState(hWnd,nNewState)

This function sets the scrolling state of a TextView window. 
Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

nNewState
WORD

Specifies the new state to be set. The value should be TV_SCR_AUTO to set automatic 
scrolling, or TV_SCR_MANUAL to set manual scrolling.

Return Value The function will return the previous scrolling state of the window as wither 
TV_SCR_AUTO or TV_SCR_MANUAL. It will return zero if an error 
occurs, or if the call to TVCreateWindow did not specify one or both of the 
TVS_HSCROLL and TVS_VSCROLL options.

Page 29



The TextView DLL

TVSetTextColor
Syntax
TVSetTextColor(hWnd,crColor)

This function sets the colour in which text is written to a TextView window. 
Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

crColor
COLORREF

Specifies the colour in which text is to be written.

Return Value The function will return the previously set colour, or -1 if an error occurs.
Comments Using this function does not affect the colour of text that has already been 

written.

Page 30



The TextView DLL

TVSuspendWindow
Syntax
TVSuspendWindow(hWnd,nNewState)

Sets the suspend state of a TextView window.
Parameter
Type/Description

hWnd
HWND

Specifies the handle to the window concerned.

nNewState
BOOL

Specifies the state to be set. It should be TRUE to suspend the window, and FALSE to 
desuspend it.

Return Value The return value is the previous suspend state of the window.

Page 31



The TextView DLL

TVVersion
Syntax
TVVersion(lpMark,lpVersion,lpCycle)

Returns the version identification of the TextView DLL. This consists of a 
mark number, a version number within that mark, and a compilation cycle 
number within that version.

Parameter
Type/Description

lpMark
LPINT

Pointer to an int to receive the mark number.

lpVersion
LPINT

Pointer to an int to receive the version number.

lpCycle
LPINT

Pointer to an int to receive the cycle number.

Return Value The function has no return value.

Page 32



The TextView DLL

Data Types and Structures

This section describes the data types and structures that are defined by TextView. Definitions of
all the items described here are contain in the header file textview.h.

Data types
The data  types  in  the following list  are  key words that  define  the size and meaning of
arguments and return values associated with TextView functions.

Type

Definition

LPTVWSTATUS

Long pointer to a TVWSTATUS data structure.

Data structures
This section lists data structures that are used by TextView.

TVWSTATUS
Status Information for a TextView Window

The TVWSTATUS structure contains information giving the current status of a
TextView window.

typedef struct sTVWSTATUS
{

DWORD
dwFlags;

int
nMaxLines;

int
nLinesStored;

BOOL

Page 33



The TextView DLL

nSuspended;
BOOL

nReturningData;
BOOL

nRedraw;
WORD

nScrollState;
int

nTabSize;
int

nMessagesLost;
int

nRows;
int

nColumns;
int

nTopLine;
int

nNextRow;
COLORREF
crColor;
COLORREF
crBkColor;

} TVWSTATUS;
The TVWSTATUS structure has the following fields:

Parameter
Description

dwFlags
Contains a copy of the dwFlags argument passed to the TVCreateWindow call that created
the window.

nMaxLines
Specifies the maximum number of lines that may be stored with the window.

nLinesStored
Specifies the number of lines currently stored with the window.

Page 34



The TextView DLL

nSuspended
Specifies whether the window is currently in suspended state.

nReturningData
Specifies whether TextView is currently servicing a TVReturnData call for this window.

nRedraw
Specifies whether lines written to the window are being displayed immediately, or are being
held until a window redraw is permitted.

nScrollState
Specifies the current scroll state of the window. The value will be either TV_SCR_AUTO or
TV_SCR_MANUAL.

nTabSize
Specifies the width of a tab stop, in characters.

nMessagesLost
Specifies the number of messages that have been lost by being written to the window while
it is in manual scroll state. The value is cleared whenever the scroll state is set to automatic.

nRows
Specifies the current depth of the window, in text rows.

nColumns
Specifies the current width of the window, in average characters.

nTopLine
Specifies the line number of the line currently displayed at the top of the window.

Page 35



The TextView DLL

nNextRow
Specifies the window row to which the next line of text will be written (the first row is
numbered zero). If the value is negative, the window is full and will need to be scrolled to
accept the next line.

crColor
The current text colour.

crBkColor
The current background colour.

Page 36



The TextView DLL

Appendix : The Demonstration Program

Supplied with the TextView DLL in the full distribution set are full sources for a demonstration
program that both show you what the system can do, and supplement the information in this
guide on how to program with it.

The sources are Copyright (c) Alan Phillips 1991. However, the techniques shown within them
may be freely used and adopted for any non-commercial applications.

A real-time program trace facility
The purpose of the demonstration program is to show you how you can use TextView to add
a real-time tracing facility to your application.

Of course, there are many ways to debug a program while you are developing it. You can
use Microsoft's  CodeView system to  monitor  it;  but  this  is  relatively  clumsy and,  until
CodeView 3.05,  required you to have two monitors attached to your system. Even with
single monitor capability, CodeView debugging can be a time-consuming business.

If you know the area where a bug is occurring, you might plant MessageBox calls at suitable
points to stop the program and display details. This, though, is very laborious, requiring you
to click an OK box every time; and if your bug is deep inside a loop might well be totally
impractical.

TextView lets you add a real-time trace facility to your program with ease. In essence, you
can regard it as giving you the ability you have in DOS programs of performing printf calls
to the screen: the messages appear as you write them, and scroll off the top of the screen to
make room for new ones. However, with TextView you have a permanent record of as many
of the lines as you choose, and can at any time scroll back through them.

Typically, you would add simple text output calls to your program as you develop it, writing
out progress records and useful values as you go. The trace routine in the supplied sources is
a basic example of such a routine. Its action is controlled by a simple on or off flag that is
settable from a menu,  so you can activate  or de-activate  tracing whenever you want.  Of
course, you could add more sophisticated criteria, to allow you to trace, for example, only
certain categories of events or at certain debug levels.

Running the demonstration
To run the demonstration you must first  have installed the  TextView DLL as described
earlier. Then, you can start it from the Program Manager, the File Manager or any other
program launcher you may have.

Page 37



The TextView DLL

Trace menu items
All the actions of the demonstration program are controlled by options in the trace 
menu. Some of the options control the trace system's operation; others simulate an 
application writing messages as it runs.

Start tracing
This option activates tracing. If a trace window does not already exist, it causes a call to
TVCreateWindow to create one. The global tracing flag is set to on, so that the trace routine
becomes active.

Stop tracing
Sets the global tracing flag to off, so that the trace routine does nothing. The trace window
is  not  affected.  These  two  options  show  on  way  of  controlling  the  system  from  your
application.

Write one message
Causes one call to the trace routine to write a message. Depending on the setting of the
global tracing flag, text either will or will not appear in the trace window.

Write batch
Writes a batch of 200 messages in a loop, to demonstrate how the TextView window scrolls.

Write batch fast
Writes a batch of 200 messages in a loop. Unlike the previous option,  the  TVSetRedraw
function is called to inhibit updating of the TextView window while this is being done. The
effect is that the messages are written substantially faster.

Reset trace window
Calls the TVResetWindow function to clear all data stored in the TextView window.

Show trace window
This option uses normal Windows API functions to make the TextView window visible, and
bring it to the top of the screen. It shows you one case in which you can manipulate the
window with normal Windows functions as well as with TextView functions.

Show trace status
Calls  the  TVGetWindowStatus function  to  display  some  details  of  what  the  TextView
window is doing.

Page 38



The TextView DLL

Trace window scrolling
This menu option shows you a further popup menu item containing two items: Automatic
and  Manual.  These let  you change the scrolling state of the  TextView window from the
application's menu.
You can also change the scrolling state from the Scrolling item in the TextView window's
own menu. Note how the application uses the menu notification facility to keep the check
marks on its menu item in line with the window state when this is done.

Copy trace window
This menu item creates a second TextView window, and uses the TVReturnData function to
copy all the data from the first one into it.

Kill trace window
This destroys the TextView window and deletes all the stored data.

Source files
The demonstration program source comprises a number of modules,  which are described
briefly below. For full details you should consult the actual sources, which contain a large
amount of explanatory comment.

main.c
This is the entry point module for the demonstration program. It contains the message 
processing routine that services messages sent to the main window. Note, of course, that
the application contains no code at all to service messages sent to the TextView window
- the DLL handles all of this itself.

trace.c
This module contains the routines that service most of the Trace menu items, and the 
trace routine itself. This routine is written to accept a format string, such as you pass to 
printf, and a variable number of arguments of any type.
Also in this module is the menu handler function. This routine is called back from the 
Windows DLL to notify the application when the user clicks an item in the TextView 
window's menu.

copy.c
This module handles the Copy Trace Window menu item. It sets up a second TextView 
window and calls TVReturnData to read the contents of the first.

utils.c
This contains a few small utility routines.

Page 39



The TextView DLL

Building the program
The demonstration sources are written to be compiled with Microsoft C 6.00A. You may
need to make adjustments if you have a different compiler.

The makefile is written for a UNIX-compatible make program such as ndmake. If you use the
Microsoft nmake utility in the Programmer's Work Bench you will need to amend it.

Page 40


	The TextView DLL
	Version 1.00

	Introduction to TextView
	Thank you for using the TextView system. The author hopes that it will prove to be a powerful and useful tool to Windows applications writers, providing a facility that is both useful in the final application, and helpful in the development phase.
	This manual covers all aspects of the system. It assumes that you are an experienced Windows application developer, and are conversant with the use of the Windows API.
	The author is always interested to hear any reports about how you find TextView, what further facilities you would like it to include, and any problems you may find when using it. Contact addresses are given later in this manual.
	What is TextView?
	TextView is a system that provides a Windows 3 application with the ability to write lines of text to a window with the minimum of effort. TextView itself handles all the many operations needed to manage the window displaying the text; you need only call the function that writes the text, in exactly the same way as you would call printf in a DOS application.
	You can create as many TextView windows as you require, and all will operate independently. TextView windows can be resized by the user, minimized, maximized and scrolled horizontally and vertically with no work needed by the application. They can also have File menus that notify the application when the user requests that the window contents be written to disk.
	TextView windows can, of course, be used for an infinite variety of purposes. One possibility is to use TextView to provide a way of outputting tracing and debugging information when developing an application. Included with the system are the sources for a demonstration application that contain a flexible tracing system that may be incorporated into your own code.
	TextView is supplied as a Dynamic Link Library or DLL. In this form it is not added to the application's code at link time, but instead is bound to it dynamically by Windows whenever an application needing it is run. All applications using TextView will share the same code segments, making it very efficient in memory utilisation.

	What you need to use TextView
	In order to use TextView you will need to have a suitable compiler that can generate Windows 3 code, such as Microsoft C 6.0. The TextView functions follow the same conventions as used in the Windows API, and their descriptions later in this guide use the same layout as in the Microsoft Windows Programmer's Reference.

	Distribution and Use of TextView
	TextView is Copyright (c) Alan Phillips 1991. It may be freely distributed by anyone, to anyone. Apart from reasonable media and handling costs, no charge may be levied for its distribution. It may be stored on Bulletin Board systems and other archives so long as all the files comprising the original distribution are included. It may be repackaged to suit the storage conventions in use for the system concerned. It may not be distributed as part of commercial disk libraries without the prior agreement of the author.
	TextView may be freely used in any non-commercial Windows application. Authors of such applications may include the TextView DLL with the products either with or without the other files comprising the full distribution set. However, such application should include in their documentation (or should display in their About dialog box or in their online help) that they are using TextView, and should list the author's copyright.
	The demonstration sources supplied with TextView may be freely adapted and included in other applications as required.
	Authors of ShareWare or commercial products may not use TextView without the author's written permission.

	Disclaimer
	TextView is distributed on an as is basis. No guarantee is offered, and none should be inferred, of its correct functionality, nor of its suitability for any task whatsoever. The author accepts no liability for any loss or damage whatsoever caused as a result of using TextView with any application, whether written by the user or a third party.
	TextView is written as a private activity by the author, unconnected in any way with his employment at the University of Lancaster.

	Contacting the Author
	The author may be contacted c/o The Computer Centre, Lancaster University, Lancaster LA1 4YW, United Kingdom. Electronic mail may be addressed to one of the following addresses:
	alan@uk.ac.lancaster JANET network
	alan@lancaster.ac.uk Internet or BITNET
	alan%uk.ac.lancaster@ukc UUCP network


	Installing TextView
	There are three components to the TextView system. The DLL itself, textview.dll, should be copied to your Windows directory. The model-independent import library textview.lib should be copied to one of the directories named in your LIB environment variable - the directory containing your Windows SDK libraries or your C compiler libraries would normally be suitable. The header file textview.h should be copied to one of the directories named in your INCLUDE environment variable - the directory containing your windows.h header file would be suitable.

	Using TextView
	The TextView DLL extends the Windows API with a number of specific functions, which you call from your application. All the functions have names beginning with TV, to avoid clashes with Windows functions, those in your application or in other DLLs.
	All the functions use the Pascal calling convention, and must be declared FAR. Full function prototypes are contained in the include file textview.h; including this in your source will automatically select the right calling mode, and will also perform any necessary casts to far pointers.
	You must take two additional steps when building your application:
	You must not use the Windows LoadLibrary and GetProcAddress functions to link TextView routines at run-time. This is because some of the functions are actually within the import library and must be statically-linked.
	The sections below describe how to use TextView in your application. The text assumes that you're familiar with the Windows API and with how to program Windows applications: there is general information on this in the documentation supplied with the Microsoft Windows Software Developer's Kit, and in several other published books.
	Besides this manual, there is a comprehensively-commented set of C source routines supplied in the distribution set. These show you how you can use TextView to add a dynamic tracing utility to your application, which provides you with a very powerful development aid that enables you to keep a log of your application's activity that can be scrolled back and consulted when necessary.
	A Summary of TextView Usage
	Although it offers your application powerful facilities, TextView's API is very straightforward, and has been written to parallel closely the way you use the Windows API. The basic concepts of how the system works are these:
	The TextView Window
	A window created by TextView is an ordinary overlapped window that belongs to your application. Within certain limits you have full control over the appearance of the window: you can allow the user to resize it or not, supply it with maximize and minimize boxes, and so on.
	Creation of a TextView window is done with the TVCreateWindow function, which looks similar to the Windows CreateWindow function. The major difference is that for a TextView window the message loop is handled within the DLL and not by your application, so that you do not need to concern yourself with managing the window. TextView will look after aspects such as text scrolling on your behalf.
	Although your application does not supply the message loop, it can still interact fully with the window. A set of functions allow you to test what state the window in and to change that state, and to destroy the window when you've finished with it.
	If you choose, you can specify that a TextView window displays a File menu with Save, Save As and Print options. You do not see clicks on these menu items directly, since you do not supply the message loop, but you can arrange for TextView to call back into a routine in your application to notify you when menu items are selected.

	How Text is Stored
	TextView maintains the lines written to each window in a cyclic buffer held in an area of memory private to that window. Each window operates independently of the others, and the only practical limit to the total amount of data stored will be how much memory your system has available.
	When you create a window by calling TVCreateWindow you specify the maximum number of lines that each window can store, up to a limit of 4096 lines. Specifying a larger number requires TextView to allocate more control memory for the window, so you should not request a larger capacity that you need.
	Whenever a line is written, TextView stores the contents in dynamically-allocated memory. When the window contains the specified maximum number of lines, the next to be written will replace the oldest line, and so on. A line can be up to 512 characters long.

	Scrolling
	When you create a TextView window it will be in automatic scrolling state. In this state TextView will automatically move existing lines of text up to make room as new ones are written, without your application needing to be aware of what is happening. Old lines, of course, will disappear off the top of the window, but they will remain stored in memory until the window reaches its set capacity and they are overwritten with new lines of text.
	If the user wishes to look at older messages that are no longer visible in the window, he can put the window into manual scrolling state. TextView will draw horizontal and vertical scroll bars on the window (you may select either or both) and the user may use them to scroll around the stored text. You can specify when you create the window that it is to have a Scrolling menu to enable the user to select manual scrolling mode, or you may choose to control the window from your own application using the TVSetScrollMode function.
	When the window is in manual scroll mode it is unable to display any text written to it. However, it will count the number of messages lost should this occur, and will add a line itself to the window to warn the user when the window returns to automatic scroll mode.


	Registering a TextView Window Class
	As with the Windows CreateWindow function, you must have registered a suitable window class before you can create a TextView window using TVCreateWindow. Since most of the details of the window class have to be supplied by TextView itself, you must call a TextView function TVRegisterClass to do this, and must not use the ordinary Windows technique.
	When you call TVRegisterClass you specify four arguments: for example
	will register a class using an icon defined in your application's resource area, and will use a white background for the window.
	The function will return FALSE if it fails to register the window class, or if you pass incorrect arguments.

	Creating a TextView Window
	Creating a Window with TextView is closely analogous to how you use Windows' own CreateWindow function. The routine you call is TVCreateWindow, and many of the arguments you need to pass are have exact CreateWindow equivalents.
	The lpClassName, lpWindowTitle, X, Y, nWidth, nHeight and hInstance arguments are used in the same way as the CreateWindow arguments of the same name. The one restriction is that the window class you specify with lpClassName must have been registered with the TVRegisterClass function.
	The remaining arguments are specific to TextView and have no CreateWindow equivalents.
	hFont specifies a handle to the font that you want text written in the window to appear in. If you specify the argument as NULL, TextView will use the system font; otherwise, you can use any font created with the CreateFont function.
	The dWflags argument specifies a series of bit settings that describe the appearance you want the window to take, and what facilities it provides. These are described in detail below.
	The nTabSize value specifies how you want tabs to be expanded in lines written to the window. You give the value as a number of characters; TextView multiplies this by the width of the average character in the selected font to calculate the actual spacing. If you give a value of zero, tabs will be expanded to a width of 8 characters.
	The nMaxLines argument tells TextView how many lines of text should be stored with the window (note that this is not the size of the actual window, but the size of its data storage area). You can set this value to be from 128 to 4096. If you write more lines than this to the window, the oldest lines will be progressively overwritten.
	The lpMenuHandler argument is the procedure instance address of a function within your application that is to receive notification of things happening in the window. This is discussed in more detail below in the section on Receiving Menu Notifications. The value you pass as this argument must have been obtained by using the MakeProcInstance function. Depending on the values you have specifies in the dwFlags argument, you may be allowed to give a NULL value.
	The return value from TVCreateWindow is a normal window handle, which you use in other TextView functions. You can also pass this handle to Windows functions to manipulate the window; however you should avoid calling DestroyWindow to close it. Instead, use the TextView equivalent TVDestroyWindow, which is guaranteed to work in future releases.
	The dwFlags Argument
	This argument is a collection of bit settings that tells TextView details of how you want the window to appear, and what facilities it should support.
	The TVS_MAXIMIZE, TVS_MINIMIZE and TVS_SYSMENU settings correspond directly to dwStyle settings in CreateWindow, and control whether the window has a maximize box, a minimize box, and a system menu.
	The TVS_NOCLOSE setting can be used to disable the close option in the system menu; if you select this, your application must destroy the window, as the user will have no way to do so. If you specify a system menu, and do not disable the close option, you must supply a procedure address with the lpMenuHandler argument so that TextView can notify your application when the user closes the window.
	The TVS_NORESIZE setting allows you to create the window without a thick "resizing" frame. The user will not be able to alter the size of the window other than by minimizing or maximizing it.
	TVS_HSCROLL and TVS_VSCROLL specify whether the window is to show horizontal and vertical scroll bars if the user or your application puts it into manual scroll mode. If you don't include either of the settings, manual scroll mode cannot be selected, and the user will be unable to scroll back to look at text no longer in the window.
	TVS_TIMESTAMP controls whether TextView is to timestamp text written to the window. If you specify it, all lines will be prefixed with the current Windows time (that is, the number of milliseconds since Windows started, obtained from the GetCurrentTime function). Timestamping messages can be useful if you are using TextView to trace the path taken by your application in response to external events.
	The other settings all control what menu items should appear in the window's menu bar. TVS_SCROLLMENU selects a Scrolling menu item, which will let the user switch between manual and automatic scroll modes. You can use this setting only if you've also given either or both of TVS_HSCROLL and TVS_VSCROLL. If you specify a procedure address with the lpMenuHandler argument, your application will be notified when the user clicks these menu items.
	TVS_FILESAVE, TVS_FILESAVEAS and TVS_FILEPRINT specify that the window is to have a File menu, which should include Save, Save As and Print options respectively. You can use the three settings independently. If you use any of these settings you must specify a procedure address in the lpMenuHandler argument to receive notification when the items are clicked.


	Writing Text to a TextView Window
	Once a TextView window is created, writing text to it is simply done with the TVOutputText function. This takes three arguments:
	You can write up to 512 bytes in a line, less the length of the timestamp details if you used the TVS_TIMESTAMP option in the dwFlags argument to TVCreateWindow. If you supply a longer line than that, TextView will truncate it.
	What happens to the text depends on the current state of the TextView window you are writing it to. If the window is in automatic scroll mode, it will be displayed in the window, which will be scrolled up by one line if necessary to make room for it. The text will be written in the colour last specified with the TVSetTextColor function (or in black, if you haven't set another colour).
	If the window is in manual scroll mode, the text will be discarded. TextView will record the fact that a line has been lost, and when the user (or your application) returns the window to automatic scroll mode will add a line itself noting the number of lines that have ben lost. If the window has been suspended with a call to TVSuspendWindow, or you are currently calling the TVReturnData function to read back the data stored in the window, the text will also be discarded. Here, though, TextView will not record the fact.
	If you choose, you can determine the status of the window by calling the TVGetWindowStatus function, and so avoid making calls to TVOutputText at inappropriate moments.

	Receiving Menu Notifications
	A TextView window is an independent entity, all of whose functions are controlled within the TextView DLL itself. Your application does not provide the message loop for the window, and is normally unaware of what the user is doing to the window: TextView handles window resizing, scrolling, iconizing and so on.
	However, you may wish to make your application aware of what the window is doing for one of two reasons. Firstly, you may wish to allow the user to control the window from either its own menu or from the application's menu - for example, you might include in your application's menu the ability for the user to switch the TextView window between manual and automatic scrolling. In order to keep the application's menu state in line with the window, it will be necessary for the application to be informed whenever the state is changed using the window's own menu. The application will probably also wish to be informed when the user closes the window with the Close option in its System menu, so that it can keep track of which windows are still active.
	The second reason is that some services must be provided by the application. TextView allows you to specify that the window should possess a File menu with options such as Save and Print, but it does not itself handle these functions. Instead, it notifies the application when one of these menu items is clicked, so that it may then perform the required operations.
	All these examples of menu notifications are done via the menu handler routine specified when you create the window with TVCreateWindow. Whenever the user clicks a menu item (including the Close option in the System menu) the TextView DLL will call this routine, passing it the handle of the window concerned, and a code indicating the menu item.
	Your code can then take what action it wishes. For example, if the user clicked on File Save As, you might run a dialog to ask the user for a file name, open it, and then copy the data currently in the window to the file using the TVSaveWindowToFile function.
	The example sources contained in the distribution set contain examples of how you use menu notification. The code keeps the main window's menu in line with the current state of the window, graying some items when the window is destroyed and checking the relevant scroll state selections.

	Saving Data in a Window to File
	TextView allows you to save the contents of a window to a file on disk at any time. There are two techniques for doing this, depending on how much processing of the data you wish your application to do before it is written.
	If you application created the window and specified a File menu with File Save or File Save As options, it will be notified when they are clicked, as described above, but you can, of course, initiate a file save at any time and not solely when this occurs.
	The first technique for saving the data is the simplest. TextView provides a function TVSaveWindowToFile which will write a range of lines to a file exactly as they as stored, and if you don't need to process the data yourself this will be the easiest option. Your application will need to determine the name of the file to be written, probably by giving the user a dialog box to choose it, and open the file for writing; then it can call TVSaveWindowToFile.
	For example, if the name of the file is stored in file_name, you could use code like this to save all the data stored for the window:
	Specifying the start line as 0 and the number of lines to write as -1 causes all the stored data to be saved. The demonstration program sources in the distribution set show you this technique in use.
	The second technique for saving data allows you to process the lines before they are written. You can obtain successive lines from the window by calling the TVReturnData function, described in a following section, perform the actions required, and write to the file yourself.
	If you wish to save only the data that is actually visible in the window, you can use the TVGetWindowStatus function to obtain the required line numbers, as shown here:
	Giving the number of lines to be written as the number of rows in the window ensures that all the visible data is written. If the window is not actually full, the function will adjust the number requested itself.

	Printing Data in a Window
	TextView does not itself provide facilities to print the contents of a window to file. If you wish your application to do this, you will need to use the TVReturnData function described below to read back the window's contents, and handle the printer yourself.
	If you create the window to have a File menu with a Print option, TextView will notify your application when the user requests a print action by clicking it.

	Reading Back the Contents of a TextView Window
	Your application can call the TextView DLL at any time to read back the data stored with any TextView window, using the TVReturnData function.
	The initial call to TVReturnData nominates a buffer that you wish to use to receive the contents of the window, one line at a time. You also specify the address of a callback function; TextView will copy the text of one line into your buffer and call this function to allow you to process it, repeatedly until either every line has been processed, or you terminate the sequence.
	For example, the callback function might be declared like this:
	This routine will be called once for every line of text in the window. It checks that no data was lost due to the buffer being too small, and if it was it terminates the read of data by returning a value of zero to the DLL. If not, it calls some routine called process_file to do something to the data, and returns a non-zero value requesting the DLL to pass the next line to it.
	While your application is engaged in reading back lines of text from a window, any calls to TVOutputText to add more text to it, and most of the functions controlling the window, will be disabled.
	The example sources supplied in the distribution give you a full example of how to use TVReturnData. In this case, they read back the data from one window and make a copy of it in another.

	Destroying a TextView Window
	A TextView window may be destroyed in one of two ways. Your application may simply call the TVDestroyWindow function, which will remove the window from the screen and release all its memory resources. This may be done at any time.
	Alternatively, if you specified in the TVCreateWindow call that the window was to have a System Menu, and did not inhibit the Close option, the user may close the window directly by clicking that option. In this case, TextView will remove the window from the screen and release the memory resources used by the window. It will then notify your application that the window has been destroyed by calling the menu handler function, passing it a code of TVMI_CLOSE.
	You should not use the normal Windows DestroyWindow function to destroy a TextView window as this may be incompatible with future releases.

	Control Functions
	TextView provides your application with a range of control functions that control the operation of its windows, as described below:
	Setting Text and Background Colour
	By default, text will be displayed in a TextView window in black. The TVSetTextColor function allows you to specify any RGB value to be used for subsequent output. The TVSetBKColor function allows you to set the text background colour.

	Setting the Scroll State
	If you specify the TVS_SCROLLMENU setting in the dwFlags argument to TVCreateWindow, the window will have a Scrolling menu that will permit the user to switch between manual and automatic scroll modes at will.
	If you wish, your application can force a particular scroll state itself with the TVSetScrollState function. If you do not specify a Scrolling menu, this is the only way to change scroll modes.

	Suspending Text Output
	At some point in your application you may wish to suppress output to a TextView window. One way of doing so would, of course, be to set a global flag in your application's data segment that is checked by every routine that calls TVOutputText, and this technique  is used in the demonstration application to activate or disable tracing.
	An alternative that does not involve a global flag is to use the TVSuspendWindow function. When a window is marked as suspended, TVOutputText functions as normal, but the text is discarded.

	Temporarily Inhibiting Window Updates
	Writing text to a window, particularly if the existing contents must be scrolled to make room, can be an expensive operation in terms of processor power. If your application has to write a large number of lines to a TextView window at one time, it will be considerably slowed while the data is scrolled up through the display.
	The TVSetRedraw function allows you to configure a window so that text lines are stored as normal, but the window is not updated as they are received, letting you write the data with TVOutputText very rapidly. Then, when you have written all the lines, you can tell TextView to update the window: it will display only the final windowfull of lines, which will involve no scrolling.
	The demonstration program supplied with TextView lets you see the effect of suppressing window updates: the Write Batch menu option writes 200 lines to the window, scrolling for each one; the Write Batch Fast option disables window updating, writes 200 lines and then updates the window.

	Clearing a Window
	The TVResetWindow will destroy all data stored for a window, and it will be redrawn empty. The window will be set into automatic scroll mode, and the text colour used will be set to be black.


	Information Functions
	You can find out the exact status of a TextView window at any time by calling the TVGetWindowStatus routine. This fills in a TVWSTATUS struct that you supply; the details of the format are shown in the Data Types and Structures section.


	Functions Directory
	This chapter contains an alphabetical list of functions comprising the TextView system. The specifications are laid out in the same way as those in the Microsoft Windows Programmer's reference Manual.
	All TextView functions use the Pascal calling convention, and must be declared FAR. Including the header file textview.h in sources using these interfaces will declare their prototypes automatically, and will ensure that they are being correctly used.
	Applications that make use TextView routines must be linked with the TextView import library textview.lib.
	TVCreateWindow
	This function creates a TextView window. Many of the arguments are similar to those used with the CreateWindow function, but there are some extra values appropriate to TextView, and some inappropriate arguments may not be specified.
	TVCreateWindow will always create an overlapped window. Option flags allow the selection of minimize and maximize boxes, and whether the user will be able to resize it by dragging its borders.
	TextView allows the application to interact with the window in a controlled way. All message handling for the window is performed by TextView, but the application can specify that it wished to be notified when events such as menu item clicks occur. For example, this allows the window to appear to the user as a normal application window complete with a File menu, but for handling of the corresponding functions to be done by the application.
	Parameter
	Type/Description
	lpClassName
	lpWindowName
	X
	Y
	nWidth
	nHeight
	hInstance
	hFont
	dwFlags
	dwUnused
	nTabSize
	nMaxLines
	lpMenuHandler
	The address passed as the lpMenuHandler argument must be created by using the MakeProcInstance function. The callback function must use the Pascal calling convention and be declared FAR.
	The dwFlags argument should contain values from the list below:
	MenuHandler is a place-holder for the application-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the application's module definition file.

	Parameter
	Type/Description
	hWnd
	nMenuItem
	The menu handler callback function will be informed of which menu option has been clicked in the nMenuItem argument. The value will be one of those in the list below; if the dwFlags argument to TVCreateWindow did not enable a menu item the corresponding notification value will not occur.


	TVDestroyWindow
	Destroys a window created with the TVCreateWindow function.
	Parameter
	Type/Description
	hWnd


	TVGetWindowStatus
	This function returns status information for a TextView window.
	Parameter
	Type/Description
	hWnd
	lpStatusBlock


	TVOutputText
	Writes one line of text to a TextView window. The text is stored in the window's buffer; if this contains the maximum number of lines specified when the window was created, the oldest stored line will be replaced.
	If the TVS_TIMESTAMP option was specified when the window was created, TextView will prefix the supplied text with the current Windows time before displaying it.
	Tab characters will be expanded to the width specified when the window was created.
	The text will be written using the colour defined by the last call to TVSetTextColor, or in black by default.
	Parameter
	Type/Description
	hWnd
	lpString
	nCount
	1. If the window has been put into suspended state with a call to TVSuspendWindow, the call to TVOutputText will be silently ignored.
	2. If the application has called TVReturnData to read back the lines stored in the window, and has not yet ended the call-back loop, the call to TVOutputText will be silently ignored.
	3. If the window is in manual scroll mode, the call will also be silently ignored. However, TextView records the number of lines lost when this occurs, and will add a line to the window itself to notify the user when the window returns to automatic scroll mode.
	In all these cases, TVOutputText returns a value of TRUE to the caller. A FALSE value is used solely to indicate a system problem such as insufficient memory.
	Text longer than 512 bytes will be truncated.


	TVRegisterClass
	This function registers a window class that can subsequently be passed to TVCreateWindow to create a TextView window. The use of the function is similar to that of the RegisterClass function, with the exception that TextView itself will supply most of the details required.
	Parameter
	Type/Description
	hInstance
	lpClassName
	hIcon
	hbrBackground


	TVResetWindow
	This functions resets a TextView window to an 'empty' state. All stored text is discarded, and the window is redrawn empty. The window will be put into automatic scroll mode, and will be marked as not suspended. The text colour will be set to black.
	Parameter
	Type/Description
	hWnd


	TVReturnData
	This function requests TextView to return the data stored in a TextView window into an application-supplied buffer. TextView will copy successive lines into the buffer, and will call back into a notification function to inform the application that each line is ready. The process continues until either all the lines have been returned or the callback function returns zero.
	Parameter
	Type/Description
	hWnd
	lpBuffer
	nSize
	lpNotifyFunc
	The callback function must use the Pascal calling convention and be declared FAR.
	NotifyFunc is a placeholder for the application-supplied function name. The actual name must be exported by including it in an EXPORTS statement in the application's module definition file.

	Parameter
	Type/Description
	hWnd
	lpBuffer
	nCount
	nTruncated


	TVSaveWindowToFile
	This function writes the data stored for a TextView window into a file. It can be called at any time, and not only in response to the user clicking an item in the window's File menu.
	Parameter
	Type/Description
	hWnd
	hFile
	nStart
	nLines
	dwFlags


	TVSetBkColor
	This function sets the background colour used when text is written to a TextView window.
	Parameter
	Type/Description
	hWnd
	crColor


	TVSetRedraw
	This function sets the redraw of a TextView window. If the state is set to FALSE, lines written to the window with TVOutputText will be stored, but the screen will not be updated until the state is changed to TRUE.
	Parameter
	Type/Description
	hWnd
	nNewState


	TVSetScrollState
	This function sets the scrolling state of a TextView window.
	Parameter
	Type/Description
	hWnd
	nNewState


	TVSetTextColor
	This function sets the colour in which text is written to a TextView window.
	Parameter
	Type/Description
	hWnd
	crColor


	TVSuspendWindow
	Sets the suspend state of a TextView window.
	Parameter
	Type/Description
	hWnd
	nNewState


	TVVersion
	Returns the version identification of the TextView DLL. This consists of a mark number, a version number within that mark, and a compilation cycle number within that version.
	Parameter
	Type/Description
	lpMark
	lpVersion
	lpCycle




	Data Types and Structures
	This section describes the data types and structures that are defined by TextView. Definitions of all the items described here are contain in the header file textview.h.
	Data types
	The data types in the following list are key words that define the size and meaning of arguments and return values associated with TextView functions.
	Type
	Definition
	LPTVWSTATUS
	Long pointer to a TVWSTATUS data structure.

	Data structures
	This section lists data structures that are used by TextView.
	Parameter
	Description



	Appendix : The Demonstration Program
	Supplied with the TextView DLL in the full distribution set are full sources for a demonstration program that both show you what the system can do, and supplement the information in this guide on how to program with it.
	The sources are Copyright (c) Alan Phillips 1991. However, the techniques shown within them may be freely used and adopted for any non-commercial applications.
	A real-time program trace facility
	The purpose of the demonstration program is to show you how you can use TextView to add a real-time tracing facility to your application.
	Of course, there are many ways to debug a program while you are developing it. You can use Microsoft's CodeView system to monitor it; but this is relatively clumsy and, until CodeView 3.05, required you to have two monitors attached to your system. Even with single monitor capability, CodeView debugging can be a time-consuming business.
	If you know the area where a bug is occurring, you might plant MessageBox calls at suitable points to stop the program and display details. This, though, is very laborious, requiring you to click an OK box every time; and if your bug is deep inside a loop might well be totally impractical.
	TextView lets you add a real-time trace facility to your program with ease. In essence, you can regard it as giving you the ability you have in DOS programs of performing printf calls to the screen: the messages appear as you write them, and scroll off the top of the screen to make room for new ones. However, with TextView you have a permanent record of as many of the lines as you choose, and can at any time scroll back through them.
	Typically, you would add simple text output calls to your program as you develop it, writing out progress records and useful values as you go. The trace routine in the supplied sources is a basic example of such a routine. Its action is controlled by a simple on or off flag that is settable from a menu, so you can activate or de-activate tracing whenever you want. Of course, you could add more sophisticated criteria, to allow you to trace, for example, only certain categories of events or at certain debug levels.

	Running the demonstration
	To run the demonstration you must first have installed the TextView DLL as described earlier. Then, you can start it from the Program Manager, the File Manager or any other program launcher you may have.
	Trace menu items
	All the actions of the demonstration program are controlled by options in the trace menu. Some of the options control the trace system's operation; others simulate an application writing messages as it runs.
	Start tracing
	This option activates tracing. If a trace window does not already exist, it causes a call to TVCreateWindow to create one. The global tracing flag is set to on, so that the trace routine becomes active.

	Stop tracing
	Sets the global tracing flag to off, so that the trace routine does nothing. The trace window is not affected. These two options show on way of controlling the system from your application.

	Write one message
	Causes one call to the trace routine to write a message. Depending on the setting of the global tracing flag, text either will or will not appear in the trace window.

	Write batch
	Writes a batch of 200 messages in a loop, to demonstrate how the TextView window scrolls.

	Write batch fast
	Writes a batch of 200 messages in a loop. Unlike the previous option, the TVSetRedraw function is called to inhibit updating of the TextView window while this is being done. The effect is that the messages are written substantially faster.

	Reset trace window
	Calls the TVResetWindow function to clear all data stored in the TextView window.

	Show trace window
	This option uses normal Windows API functions to make the TextView window visible, and bring it to the top of the screen. It shows you one case in which you can manipulate the window with normal Windows functions as well as with TextView functions.

	Show trace status
	Calls the TVGetWindowStatus function to display some details of what the TextView window is doing.

	Trace window scrolling
	This menu option shows you a further popup menu item containing two items: Automatic and Manual. These let you change the scrolling state of the TextView window from the application's menu.
	You can also change the scrolling state from the Scrolling item in the TextView window's own menu. Note how the application uses the menu notification facility to keep the check marks on its menu item in line with the window state when this is done.

	Copy trace window
	This menu item creates a second TextView window, and uses the TVReturnData function to copy all the data from the first one into it.

	Kill trace window
	This destroys the TextView window and deletes all the stored data.



	Source files
	The demonstration program source comprises a number of modules, which are described briefly below. For full details you should consult the actual sources, which contain a large amount of explanatory comment.
	main.c
	This is the entry point module for the demonstration program. It contains the message processing routine that services messages sent to the main window. Note, of course, that the application contains no code at all to service messages sent to the TextView window - the DLL handles all of this itself.

	trace.c
	This module contains the routines that service most of the Trace menu items, and the trace routine itself. This routine is written to accept a format string, such as you pass to printf, and a variable number of arguments of any type.
	Also in this module is the menu handler function. This routine is called back from the Windows DLL to notify the application when the user clicks an item in the TextView window's menu.

	copy.c
	This module handles the Copy Trace Window menu item. It sets up a second TextView window and calls TVReturnData to read the contents of the first.

	utils.c
	This contains a few small utility routines.


	Building the program
	The demonstration sources are written to be compiled with Microsoft C 6.00A. You may need to make adjustments if you have a different compiler.



